Unmanned Aircraft Systems Ground Collision Severity Evaluation

Purpose

- The Unmanned Aircraft System (UAS) Ground Collision Severity Evaluation study will provide data to help inform:
 - What are the severity criteria for Unmanned Aircraft System (UAS) collisions, such as weight, kinetic energy, etc.?
 - What is the severity of a UAS collision with person or property on the ground?
 - o How can the design of a UAS minimize potential damage during a ground collision?
 - Can we categorize the severity of a UAS collision with a person or property on the ground based on the UAS and what would those categories look like?

Background

- UAS airworthiness considerations require an understanding of the hazard severity and likelihood of ground collision for UAS operations in the NAS
- Hazard severity threshold characteristics will be addressed for UAS to include:
 - o Traditional aluminum and various composite construction aircraft
 - Fixed wing and rotary wing aircraft
 - Tractor and pusher propulsion systems
 - o Flammable materials, such as fuel
 - Hazardous kinetic energies based on combinations of mass and speed

Projected Benefit of Research

- Inform operational approval restrictions for small UAS based on collision risk to person and/or property
- Inform small UAS design requirements to reduce the severity of collision with persons and/or property
- Inform risk mitigation requirements for small UAS to reduce the risk during ground collisions
- · Inform potential mitigation requirements to assure the safety of UAS operations beyond visual line of sight
- Inform a means of compliance for showing the injury potential during a ground collision

Research Approach

- Utilize encounter scenarios with persons/property on the ground to test UAS hazard severity characteristics
- Determine thresholds for serious, but non-lethal injury
- Recommend a range of hazard severities for the different characteristics and group UAS together based on risk levels

Research Partners

 The FAA's Center of Excellence for UAS Research, Alliance for System Safety of UAS through Research Excellence (ASSURE) University of Alabama-Huntsville, Embry-Riddle Aeronautical University, Mississippi State University, University of Kansas

Status

- Research began September 2015
- · Research findings underwent peer review process with NASA and DoD
- Results released April 2017
- Second phase of research set to begin June 2017

Federal Aviation
Administration

V5.2017.04.20